×

石墨烯,石墨烯是什么材料

admin admin 发表于2023-11-29 17:46:06 浏览19 评论0

抢沙发发表评论

本文目录一览:

什么是石墨烯?

1-石墨烯的结构
石墨烯是一种由碳原子以SP2杂化连接形成的单原子层二维晶体,碳原子规整的排列于蜂窝状点阵结构单元之中。每个碳原子除了以σ 键与其他三个碳原子相连之外,剩余的π电子与其他碳原子的π电子形成离域大π键,电子可在此区域内自由移动,从而使石墨烯具有优异的导电性能。同时,这种紧密堆积的蜂窝状结构也是构造其他碳材料的基本单元,单原子层的石墨烯可以包裹形成零维的富勒烯,单层或者多层的石墨烯可以卷曲形成单壁或者多壁的碳纳米管。
由于二维晶体在热力学上的不稳定性,所以不管是以自由状态存在或是沉积在基底上的石墨烯都不是完全平整,而是在表面存在本征的微观尺度的褶皱。这种微观褶皱在横向上的尺度在8-10nm范围内,纵向尺度大概为0.7-1.0nm。这种三维的变化可引起静电的产生,所以使石墨烯单层容易聚集。同时,褶皱大小不同,石墨烯所表现出来的电学及光学性质也不同。
除了表面褶皱之外,在实际中石墨烯也不是完美存在的,而是会有各种形式的缺陷,包括形貌上的缺陷(如五元环,七元环等)、空洞、边缘、裂纹、杂原子等。这些缺陷会影响石墨烯的本征性能,如电学性能、力学性能等。但是通过一些人为的方法,如高能射线照射,化学处理等引入缺陷,却能有意的改变石墨烯的本征性能,从而制备出不同性能要求的石墨烯器件。
2-石墨烯的性质
石墨烯独特的单原子层结构,决定了其拥有许多优异的物理性质。如前所述,石墨烯中的每个碳原子都有一个未成键的π电子,这些电子可形成与平面垂直的π轨道,π电子可在这种长程π轨道中自由移动,从而赋予了石墨烯出色的导电性能。研究表明室温下载流子在石墨烯中的迁移率可达到15000cm2/(V.s),相当于光速的1/300,在特定条件下,如液氦的温度下,更是可以达到25000cm2/(V.s),远远超过其他半导体材料,并且电子在晶格中的移动是无障碍的,不会发生散射,使其具有优良的电子传输性质。同时,石墨烯独特的电子结构还使其表现出许多奇特的电学性质,比如室温量子霍尔效应等。
由于石墨烯中的每个碳原子均与相邻的三个碳原子结合成很强的σ键,因此石墨烯同样表现出优异的力学性能。据哥伦比亚大学科学家利用原子力显微镜直接测试单层石墨烯的力学性能,发现石墨烯的杨氏模量约为1100GPa,断裂强度更是达到了130GPa,比最好的钢铁还要高100倍。
石墨烯同样是一种优良的热导体。因为在未掺杂石墨中载流子密度较低,因此石墨烯的传热主要是靠声子的传递,而电子运动对石墨烯的导热可以忽略不计。其导热系数高达5000W/(m.K),优于碳纳米管,更是比一些常见金属,如金银铜等高10倍以上。
除了优异的传导性能及力学性能外,石墨烯还具有一些其他新奇的性质。由于石墨烯边缘及缺陷处有孤对电子,石墨烯具有铁磁性等磁性能。石墨烯单原子层的特殊结构,使石墨烯的理论比表面积高达2630m2/g。石墨烯也具备独特的光学性能,单层石墨烯在可见光区的透过率达97%以上。这些特性使得石墨烯成为最具潜力最引人畅想的材料,可以在纳米器件、传感器、储氢材料、复合材料、场发射材料等重要领域有着广泛的应用前景。

石墨烯是什么材料?

石墨烯是二维碳纳米材料。
石墨烯是“碳材料家族”中的一员,是由一个个碳原子在平面内按照六边形蜂窝状结构排列形成的一种层状材料。由于其厚度只有一个碳原子的大小,约为0.34纳米,相当于一根头发丝的二十万分之一,是人类迄今为止发现的最薄的材料,石墨烯也被称作是一种二维材料。
正是由于这种特殊的二维原子结构,石墨烯展现出了,许多普通三维材料,并不具备的奇异性质。单层石墨烯的透光率高达97.7%,肉眼看过去几乎是完全透明的。
它有着绝佳的导热性,热传导能力是金刚石的两倍以上。石墨烯的机械强度极大,比钢铁还要强200倍。石墨烯还具有十分优良的电学性质,导电性比银和铜还强,载流子迁移率,比碳纳米管和硅还高。
扩展资料;
石墨烯的特性;
1、石墨烯是已知强度最高的材料之一,同时还具有很好的韧性,且可以弯曲,石墨烯的理论杨氏模量达1.0TPa,固有的拉伸强度为130GPa。而利用氢等离子改性的还原石墨烯,也具有非常好的强度,平均模量可大0.25TPa。
由石墨烯薄片组成的石墨纸拥有很多的孔,因而石墨纸显得很脆,然而,经氧化得到功能化石墨烯,再由功能化石墨烯做成石墨纸,则会异常坚固强韧。
2、石墨烯具有非常良好的光学特性,在较宽波长范围内吸收率约为2.3%,看上去几乎是透明的。在几层石墨烯厚度范围内,厚度每增加一层,吸收率增加2.3%。大面积的石墨烯薄膜,同样具有优异的光学特性,且其光学特性,随石墨烯厚度的改变,而发生变化。
这是单层石墨烯,所具有的不寻常低能电子结构。室温下对双栅极双层石墨烯场效应晶体管,施加电压,石墨烯的带隙可在0~0.25eV间调整。施加磁场,石墨烯纳米带的光学响应,可调节至太赫兹范围。
3、溶解性:在非极性溶剂中表现出良好的溶解性,具有超疏水性和超亲油性。
参考资料来源;人民网——人民日报科技大观:石墨烯,潜在应用令人惊喜
百度百科——石墨烯

石墨烯是什么东西

石墨烯是一种以sp2杂化连接的碳原子紧密堆积成单层二维蜂窝状晶格结构的新材料。
石墨烯(Graphene)是一种以sp2杂化连接的碳原子紧密堆积成单层二维蜂窝状晶格结构的新材料。石墨烯具有优异的光学、电学、力学特性,在材料学、微纳加工、能源、生物医学和药物传递等方面具有重要的应用前景,被认为是一种未来革命性的材料。
英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,用微机械剥离法成功从石墨中分离出石墨烯,因此共同获得2010年诺贝尔物理学奖。石墨烯常见的粉体生产的方法为机械剥离法、氧化还原法、SiC外延生长法,薄膜生产方法为化学气相沉积法(CVD)。
石墨烯介绍
2018年3月31日,中国首条全自动量产石墨烯有机太阳能光电子器件生产线在山东菏泽启动。实际上石墨烯本来就存在于自然界,只是难以剥离出单层结构。石墨烯一层层叠起来就是石墨,厚1毫米的石墨大约包含300万层石墨烯。
铅笔在纸上轻轻划过,留下的痕迹就可能是几层甚至仅仅一层石墨烯。石墨烯是已知强度最高的材料之一,同时还具有很好的韧性,且可以弯曲,石墨烯的理论杨氏模量达1.0TPa,固有的拉伸强度为130GPa。

石墨烯是什么

本产品采用石墨烯改性纤维发热体,无灼热感,产生远红外射线,有保健功能,远红外发热体产生的6μm—14μm的远红外光波,此波段的远红外光波与人体的水分子皮肤和细胞组织形成共振,有利于身体健康,能渗透到皮肤及皮下组织深处,从而产生温热效应,改善血液循环,扩张毛血管,排除微循环障碍,长期使用,能起到活血、通络、促进新陈代谢,使皮肤细腻、延缓衰老。
远红外光波功能:
远红外是太阳光中最能够深入皮肤和组织的一种射线,它能迅速被人体吸收与人体组织细胞共振,形成热反应,促使皮下深层温度上升.使微血管扩长,加快血液循环。将妨害新陈代谢的废物清除,使组织重新复活,加速酵素生成。对于血液循环和微循环障碍引起的众多种疾病,均具有预防作用。
石墨烯快速导热、优异的电热转化等独特属性,使得它从诞生开始,便在加热保暖上具备了其他传统产品不可替代的优势。石墨烯产品的面世,将彻底颠覆人们对传统保暖产品及方式的认识,重新定义“保暖产品”,开创“新保暖”的烯时代。
石墨烯发热带产品特点:
1、电热转换效率高,节省电能 -- 石墨烯改性纤维发热体是一种全黑体材料、电热转化率比金属丝等发热体高30%,热效率高达99.9%;
2、发热时产生对人体健康极为有益的远红外光波--通电后,石墨烯改性纤维发热体将99.9%的电能转换成对人体健康极为有益的波长为6~14微米的远红外线热辐射;
3、安全性 -- 在相同的电流负荷面积下,石墨烯改性纤维的强度比金属丝高6~10倍,在使用过程中不会发生折断。由于石墨烯改性纤维是网状发热体,因此,即便有1根折断也不会影响整体通电发热。而且折断了的部位,一头表面温度在60℃,不起弧,从而有效地杜绝了火灾等事故的发生;
4、热效率高--例如室内环境温度为0℃--10℃,本系列产品在瞬间温度即可达到人体非常舒适温暖的30-40℃左右,一直恒温;电热转换效率高。
石墨烯发热片主要应用领域:
1、发热服装、发热马甲(户外工作人员):长期的寒气入侵导致腰背受寒,石墨烯发热外套在背部设置了发热区域,加速脊椎周边穴位循环代谢,为身体提供动力,为健康护航
2、发热鞋垫:可保持脚部干爽,防止潮湿,抑制细菌.
3、石墨烯发热护颈:上班族长期伏案,头颈部位长时间保持一种姿势,很容易因肌肉僵硬、疲劳而引发颈椎疼痛。石墨烯发热护颈,10秒速热,发热面积大,能覆盖整个后颈部,作用于酸痛区域。
4、石墨烯发热眼罩:石墨烯发热眼罩内置石墨烯发热带,通电后可释放时宜人体的6-14um远红外生命光波,促进眼部周围血液循环,舒减眼部疲劳,保护眼周肌肉。
石墨烯发热带解决了原有技术的不足具有更高的稳定性(电阻稳定、变化仅有0.1%-1%)、平整度(和普通布料一样平整)、抗拉力(比无纺布抗拉力增强几倍)、安全性(接触电阻几乎等于0、使用过程中不会出现起火花现象)产品电压从(3.7v ,5v,12V、24V、36V)的安全电压到110V、220V民用电,即安全又环保省电。
厨梓宝电热主要生产石墨烯发热片、聚酰亚胺PI发热膜、PET电热膜、硅胶加热等电热制品。
生活用品系列:暧手宝,电热手套,电热围巾,电热衣服,保温杯,家用保温碗等。
保健用品系列:养生鞋,养生鞋垫,养生内衣,暖宫宝,性用品发热,电加热敷腰带,按摩眼罩等。
其它用品系列:卷发器,汽车座垫、汽车后视镜等。
石墨烯是二维碳纳米材料。
石墨烯是一种由碳原子以sp2杂化轨道,组成六角型呈蜂巢晶格的二维碳纳米材料。石墨烯具有优异的光学、电学、力学特性,在材料学、微纳加工、能源、生物医学和药物传递等方面具有重要的应用前景,被认为是一种未来革命性的材料。
石墨烯可以做成化学传感器,这个过程主要是通过石墨烯的表面吸附性能来完成的,根据部分学者的研究可知,石墨烯化学探测器的灵敏度可以与单分子检测的极限相比拟。石墨烯独特的二维结构使它对周围的环境非常敏感。石墨烯是电化学生物传感器的理想材料,石墨烯制成的传感器在医学上检测多巴胺、葡萄糖等具有良好的灵敏性。
石墨烯的功效
1、石墨烯集成电路:由于石墨烯的超强传输性能和非常好的导热性,石墨烯也被认为是取代硅原料的材料,石墨烯应该能成为下一代的电路板材料。
2、石墨烯电池:在生产电池的时候,可以用作正负极的高端材料非石墨烯莫属,石墨烯也可以用作导电的“添加剂”增加在正负极中以提高电池的效率,增加了石墨烯的电池一般情况下可以提高电池的整体效率。
3、石墨烯触摸屏:智能手机的关键部件,是一个导电且非常透明的触摸屏。

石墨烯是什么东西啊?

石墨烯是是由碳原子以六角形蜂巢晶格排列形成,只有一个碳原子厚度的二维材料。石墨烯在光学、电学、力学特性,在材料学、微纳加工、能源、生物医学和药物传递等方面具有重要的应用前景。
石墨烯拥有优异的光学、电学、力学等特性,这种新型材料的结构其实非常简单,就是将碳原子按蜂窝状布置,其实在自然界中,就存在着石墨烯这种材料,只是很难将其剥离成单层结构,石墨烯如果一层层叠加起来就是石墨,仅1毫米厚的石墨大约就包含了300万层的石墨烯,后来国外科学家利用机械剥离法,成功分离出了单层的石墨烯结构,如今工业上生产石墨烯的方式主要有机械剥离法、氧化还原法、SiC外延生长法,薄膜生产方法为化学气相沉积法等几种。
优势
石墨烯拥有良好的导电性,如果将其制成导体,能够用于超导技术领域,因为它几乎不会产生电阻,后来出现的石墨烯电池,性能更是远远超越锂电池,因为石墨烯电池的单位电容量更大,可以有效增加电池的能量存储,从而增加工作时间,并且比锂电池更加安全,不用担心自燃等问题。
其次,用石墨烯甚至有望搭建太空电梯,因为它是世界最轻,同时结构最坚固的材料,就有日本科学家提出,可以用这种材料来建设通往太空的电梯装置,将石墨烯制成碳纳米管,只需要很细的横截面,就可以让碳纳米管具有很强的承重能力,搭建太空电梯完全存在可能性,目前主要问题是如何大批量低成本地生产出碳纳米管,因为现在制约它的主要是生产工艺以及制造成本。
德福电热石墨烯又称”单层石墨片“,是指一层密集的、包裹在蜂巢晶体点阵上的碳原子,碳原子排列成二维结构,与石墨的单原子层类似。
2004年,二维结构石墨烯的发现推翻了“热力学涨落不允许二维晶体在有限温度下自由存在”的认知,震撼了整个物理界,它的发现者---英国曼切斯特大学物理和天文学系的Geim和Novoselov也因此获得了2008年诺贝尔物理学奖的提名。与碳纳米管相比,石墨烯有完美的杂化结构,大的共轭体系使其电子传输能力很强,而且合成石墨烯的原料是石墨,价格低廉,这表明石墨烯在应用方面将优于碳纳米管。与硅相比,石墨烯同样具有独特优势:硅基的微计算机处理器在室温条件下每秒钟只能执行一定数量的操作,然而电子穿过石墨烯几乎没有任何阻力,所产生的热量也非常少。另外,石墨烯本身就是一个良好的导热体,可以很快地散发热量。由于具有优异的性能,如果由石墨烯制造电子产品,则运行的速度可以得到大幅提高。速度还不是石墨烯的唯一优点。硅不能分割成小于10nm的小片,否则其将失去诱人的电子性能;与硅相比,石墨烯被分割时其基本物理性能并不改变,而且其电子性能还有可能异常发挥。因而,当硅无法再分割得更小时,比硅还小的石墨烯可继续维持摩尔定律,从而极有可能成为硅的替代品推动微电子技术继续向前发展。
单层石墨烯(Graphene):指由一层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子构成的一种二维碳材料。
双层石墨烯(Bilayer or double-layer graphene):指由两层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子以不同堆垛方式(包括AB堆垛、AA堆垛等)堆垛构成的一种二维碳材料。
少层石墨烯(Few-layer):指由3-10层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子以不同堆垛方式(包括ABC堆垛,ABA堆垛等)堆垛构成的一种二维碳材料。
多层石墨烯又叫厚层石墨烯(multi-layer graphene):指厚度在10层以上10nm以下苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子以不同堆垛方式(包括ABC堆垛、ABA堆垛等)堆垛构成的一种二维碳材料。
石墨烯是一种以sp2杂化连接的碳原子紧密堆积成单层二维蜂窝状晶格结构的新材料。
石墨烯具有优异的光学、电学、力学特性,在材料学、微纳加工、能源、生物医学和药物传递等方面具有重要的应用前景,被认为是一种未来革命性的材料。
石墨烯是已知强度最高的材料之一,同时还具有很好的韧性,且可以弯曲,石墨烯的理论杨氏模量达1.0TPa,固有的拉伸强度为130GPa。而利用氢等离子改性的还原石墨烯也具有非常好的强度,平均模量可大0.25TPa。
由石墨烯薄片组成的石墨纸拥有很多的孔,因而石墨纸显得很脆,然而,经氧化得到功能化石墨烯,再由功能化石墨烯做成石墨纸则会异常坚固强韧。
光学特性:
石墨烯具有非常良好的光学特性,在较宽波长范围内吸收率约为2.3%,看上去几乎是透明的。在几层石墨烯厚度范围内,厚度每增加一层,吸收率增加2.3%。大面积的石墨烯薄膜同样具有优异的光学特性,且其光学特性随石墨烯厚度的改变而发生变化。
这是单层石墨烯所具有的不寻常低能电子结构。室温下对双栅极双层石墨烯场效应晶体管施加电压,石墨烯的带隙可在0~0.25eV间调整。施加磁场,石墨烯纳米带的光学响应可调谐至太赫兹范围。

石墨烯是什么

石墨烯是一种由碳原子以sp#178杂化轨道组成六角型呈蜂巢晶格的二维碳纳米材料石墨烯内部碳原子的排列方式与石墨单原子层一样以sp2杂化轨道成键,并有如下的特点碳原子有4个价电子,其中3个电子生成sp2键,即每个碳;石墨烯是一种以sp#178杂化连接的碳原子紧密堆积成单层二维蜂窝状晶格结构的新材料石墨烯具有优异的光学电学力学特性,在材料学微纳加工能源生物医学和药物传递等方面具有重要的应用前景,被认为是一种未来革命;石墨烯是二维碳纳米材料石墨烯是“碳材料家族”中的一员,是由一个个碳原子在平面内按照六边形蜂窝状结构排列形成的一种层状材料由于其厚度只有一个碳原子的大小,约为034纳米,相当于一根头发丝的二十万分之一,是;石墨烯是一种以spsup2杂化连接的碳原子紧密堆积成单层二维蜂窝状晶格结构的新材料石墨烯具有优异的光学电学力学特性,在材料学微纳加工能源生物医学等方面具有重要的应用前景石墨烯叠起来就是石墨,厚1毫米;石墨烯Graphene是一种以sp#178杂化连接的碳原子紧密堆积成单层二维蜂窝状晶格结构的新材料石墨烯具有优异的光学电学力学特性,在材料学微纳加工能源生物医学和药物传递等方面具有重要的应用前景,被认为是一。
石墨烯Graphene是一种由碳原子以sp2杂化方式形成的蜂窝状平面薄膜,是一种只有一个原子层厚度的准二维材料,所以又叫做单原子层石墨英国曼彻斯特大学物理学家安德烈·盖姆和康斯坦丁·诺沃肖洛夫,用微机械剥离法成功从石墨;石墨烯是由碳原子以六角形蜂巢晶格排列形成,只有一个碳原子厚度的二维材料石墨烯是从石墨中提取出来的材料,最初是从中分离出来的,它是一种极其导电的元素碳形式,由单个平坦的碳原子片排列成重复的六角形晶格构成石墨烯;石墨烯是一种由碳原子以SPsup2杂化轨道组成六角型呈蜂巢晶格的二维碳纳米材料,具有优异的光学电学力学特性,在材料学微纳加工能源生物医学和药物传递等方面具有重要的应用前景石墨烯是什么东西 英国曼彻斯特;石墨烯是一种以sp_杂化连接的碳原子紧密堆积成单层二维蜂窝状晶格结构的新材料石墨烯具有优异的光学电学力学特性,在材料学微纳加工能源生物医学和药物传递等方面具有重要的应用前景,被认为是一种未来革命性的材。
石墨烯是一种由碳原子以sp#178杂化轨道组成六角型呈蜂巢晶格的二维碳纳米材料石墨烯具有优异的光学电学力学特性,在材料学微纳加工能源生物医学和药物传递等方面具有重要的应用前景,被认为是一种未来革命性的;1石墨烯是一种新型纳米材料,是一种二维晶体,由一层层蜂窝状有序排列的平面碳原子构成的晶体,被称为“黑金”“新材料之王”,具有良好的透光性,被认为是一种未来革命性的材料2手机使用技巧以小米10为例。
石墨是由一层层蜂窝状有序排列的平面碳原子构成的晶体当把石墨片通过物理或化学方法剥成单层之后,这种只有一个单原子层的石墨薄片称为单碳层石墨烯不要看它薄,它的硬度甚至比钢铁要高几百倍因为薄,所以石墨烯;石墨烯Graphene是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料石墨烯是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收23%的光,导热系数高达5300 Wm·K。
石墨烯是二维碳纳米材料石墨烯是一种由碳原子以sp#178杂化轨道,组成六角型呈蜂巢晶格的二维碳纳米材料石墨烯具有优异的光学电学力学特性,在材料学微纳加工能源生物医学和药物传递等方面具有重要的应用前景;石墨烯是二维晶体管是保护层是电池甚至电子行业的新星石墨烯是一种二维晶体,人们常见的石墨是由一层层以蜂窝状有序排列的平面碳原子堆叠而形成的,石墨的层间作用力较弱,很容易互相剥离,形成薄薄的石墨片当把。
石墨烯是一种以sp_杂化连接的碳原子紧密堆积成单层二维蜂窝状晶格结构的新材料石墨烯具有优异的光学电学力学特性,在材料学微纳加工能源生物医学和药物传递等方面具有重要的应用前景,被认为是一种未来革命性的;石墨烯是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料,最大的特性是其中电子的运动速度达到了光速的1300,远远超过了电子在一般导体中的运动速度这使得石墨烯中的电子,或更。

石墨烯是什么

石墨烯(Graphene)是一种二维晶体,由碳原子以 sp2 杂化轨道组成六角型呈蜂巢晶格的二维碳纳米材料。石墨烯具有优异的光学、电学、力学特性,在材料学、微纳加工、能源、生物医学和药物传递等方面具有重要的应用前景,被认为是一种未来革命性的材料。
石墨烯的结构
毋庸置疑,石墨烯是继纳米碳管、富勒烯球后的又一重大发现,石墨是三维(或立体)的层状结构,石墨晶体中层与层之间相隔340pm,距离较大,是以范德华力结合起来的,即层与层之间属于分子晶体。
但是,由于同一平面层上的碳原子间结合很强,极难破坏,所以石墨的溶点也很高,化学性质也稳定,其中一层就是石墨烯。
石墨烯是由单层碳原子组成的六方蜂巢状二维结构,它可以包裹起来形成零维的富勒烯(Fullerene,又译作福乐烯),又名巴基球或巴克球(Buckyball,其他名称还有球碳与芙,是继金刚石和石墨之后于1985 年发现的碳元素的第三种晶体形态。
卷起来形成一维的纳米碳管(Carbon Nanotube 是具有石墨结构、并按一定规则卷曲形成纳米级管状结构的孔材料),层层堆积形成三维的石墨。
石墨烯的特点
纯净的石墨烯是一种只有一个原子厚的结晶体,具有超薄、超坚固和超强导电性能等特性,石墨烯具有优异的电学、热学和力学性能,这些特点可以帮助石墨烯在高性能纳米电子器件、复合材料、场发射材料、气体传感器及能量存储等领域获得广泛应用。
科学界认为石墨烯极有可能凭借无与伦比的特点和优势取代硅而成为未来的半导体材料,具有非常广阔的应用前景。

石墨烯是什么材料

石墨烯是一种以碳原子紧密堆积成单层二维蜂窝状晶格结构的新材料。具备低温远红外功能,集抗菌抑菌、抗紫外线。
石墨烯独特的二维结构使其对周围的环境非常敏感,是电化学生物传感器的理想材料。由于石墨烯结构的高度稳定性,石墨烯制作的晶体管在接近单个原子的尺度上依首念颂然能稳定地工作。石墨烯具有质量轻、高化学稳定性和高比表面积等优点,使之高裂成为储氢材料的最佳候选者。
石墨烯
石墨烯内部碳原子的排列方式与石墨单原子层一样以sp2杂化轨道成键,并有如下的特点:碳原子有4个价电子,其中3个电子生成sp2键,即每个碳原子都贡献一个位于pz轨道上的未成键电子,近邻者郑原子的pz轨道与平面成垂直方向可形成π键,新形成的π键呈半填满状态。
研究证实,石墨烯中碳原子的配位数为3,每两个相邻碳原子间的键长为1.42×10-10米,键与键之间的夹角为120°。除了σ键与其他碳原子链接成六角环的蜂窝式层状结构外,每个碳原子的垂直于层平面的pz轨道可以形成贯穿全层的多原子的大π键,因而具有优良的导电和光学性能。
以上内容参考:百度百科——石墨烯

什么是石墨烯

石墨烯是由碳原子组成的二维晶体材料,具有极高的导电性、热导性和机械强度。石墨烯的碳原子呈六角形排列,形成一个类似于蜂窝状的结构,只有一层原子厚度,厚度约为0.335纳米。由于其独特的物理和化学特性,石墨烯已广泛应用于电子学、光电子学、生物医学等领域。
石墨烯是二维晶体管、是保护层、是电池甚至电子行业的新星。
石墨烯是一种二维晶体,人们常见的石墨是由一层层以蜂窝状有序排列的平面碳原子堆叠而形成的,石墨的层间作用力较弱,很容易互相剥离,形成薄薄的石墨片。当把石墨片剥成单层之后,这种只有一个碳原子厚度的单层就是石墨烯。
最新发现是人们在防腐蚀方面最有效的方法。常用的聚合物涂层很容易被刮伤,降低了保护性能;而石墨烯来做保护膜,显著延缓了金属的腐蚀速度,更加坚固抗损伤。
石墨烯不仅是电子产业的新星,应用于传统工业的前途也不可限量。其应用方向:海洋防腐、金属防腐、重防腐等领域。石墨烯具有良好的导热、导电性能。
然而利用石墨烯其研制生产的柔性石墨烯散热薄膜能帮助现有笔记本电脑、智能手机、LED显示屏等,石墨烯能有助于大大提升散热性能。
石墨烯的作用
它具有优异的光学、电学、力学特,在材料学、微纳加工、能源、生物医学和药物传递等方面具有重要的应用前景,被认为是一种未来革命性的材料。英国曼彻斯特大学物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫,因从石墨中分离出石墨烯,获得2010年诺贝尔物理学奖。